CPCT परीक्षा पास करने की सबसे स्मार्ट रणनीति

यह किताब क्यों अलग है?

नमस्ते दोस्तों!

CPCT की तैयारी शुरू कर दी? क्या आप भी कन्फ्यूज हैं कि क्या पढ़ें और क्या छोड़ें? क्या बाजार में मौजूद मोटी-मोटी किताबें आपको डराती हैं, जिनमें इतनी जानकारी है जो शायद कभी परीक्षा में पूछी भी नहीं जाती? अगर आपका जवाब 'हाँ' है, तो आप बिलकुल सही जगह पर हैं।

यह किताब उन सभी किताबों से अलग है। क्यों? क्योंकि यह अनुमानों (guesses) पर नहीं, बल्कि ठोस डेटा (Solid Data) पर आधारित है।

समस्या का समाधान: हमारा डेटा-संचालित दृष्टिकोण

क्या आप भी यह सोचकर परेशान हैं कि CPCT की तैयारी के लिए क्या पढ़ें और क्या छोडें?

अब आपकी तैयारी अनुमान पर नहीं, बल्कि ठोस आंकड़ों (Concrete Data) पर आधारित होगी। हमारी विशेषज्ञ टीम ने CPCT परीक्षा के पैटर्न को समझने के लिए एक व्यापक शोध किया है, जिसके निष्कर्ष आपकी सफलता सुनिश्चित कर सकते हैं।

🗲 हमारी शोध पद्धति (Our Research Methodology):

हमने CPCT के पिछले 10 वर्षों (2015-2025) के 10,000 से अधिक प्रश्नों का क्वांटिटेटिव एनालिसिस (Quantitative Analysis) किया है। प्रत्येक प्रश्न को 50 से अधिक टॉपिक्स और सब-टॉपिक्स में सटीकता के साथ वर्गीकृत किया गया है।

👉 प्रमुख निष्कर्ष (Key Findings):

इस डेटा विश्लेषण से यह स्पष्ट रूप से सिद्ध होता है कि 75 में से 52 कंप्यूटर प्रश्न कुछ गिने-चुने 'कोर स्कोरिंग एरिया' (Core Scoring Areas) से ही आते हैं। परीक्षा लेने वाली एजेंसी इन्हीं टॉपिक्स को बार-बार दोहराती है।

इसी गहन शोध के आधार पर हमने तैयार किया है –CPCT में "38+ अंकों का डेटा-ड्रिवन फॉर्मूला"

नीचे दी गई तालिका हमारे विश्लेषण के प्रमुख निष्कर्षों को दर्शाती है। यह आपको बताएगी कि आपको अपना समय और ऊर्जा कहाँ केंद्रित करनी है।

क्रमांक	मुख्य टॉपिक (Main Topic)	प्रश्नों का प्रतिशत	अनुमानित प्रश्न (52 में से)	प्रमुख सब-टॉपिक्स (इन पर विशेष ध्यान दें)
1	MS Office Suite	~40%	~21 प्रश्न	MS Excel (सबसे महत्वपूर्ण): फंक्शन्स, फॉर्मूला, कीबोर्ड शॉर्टकट, चार्ट्स, पिवट टेबल। MS Word: मेल मर्ज, शॉर्टकट कीज, फॉर्मेटिंग।
2	कंप्यूटर फंडामेंटल्स	~25%	~13 प्रश्न	हार्डवेयर: CPU (ALU), मेमोरी (RAM/ROM), इनपुट/आउटपुट डिवाइस, स्टोरेज। सॉफ्टवेयर: OS, यूटिलिटी, प्रोप्राइटरी vs ओपन-सोर्स।
3	नेटवर्किंग और इंटरनेट	~20%	~10 प्रश्न	नेटवर्किंग कॉन्सेप्ट्स: LAN/WAN/PAN, OSI मॉडल, प्रोटोकॉल्स (Email/VoIP)। इंटरनेट: URL, सर्च टेक्निक्स, वेब ब्राउज़र।
4	अन्य महत्वपूर्ण टॉपिक्स	~15%	~8 प्रश्न	कंप्यूटर सिक्योरिटी: वायरस, मैलवेयर, फ़ायरवॉल। फाइल फॉर्मेट्स: .pptx, .accdb, .xml आदि।
	कुल (Total)	100%	52 प्रश्न	

💡 हमारा वादाः

"इस किताब में आपको कोई भी फालतू थ्योरी या ऐसा टॉपिक नहीं मिलेगा जिसका परीक्षा में आने का चांस बहुत कम हो। हर शब्द, हर टॉपिक, और हर क्विज़ सिर्फ एक ही लक्ष्य के लिए डिज़ाइन किया गया है – आपको पहली बार में आसानी से 38+ अंक दिलाना।"

इस किताब का पूरा फायदा कैसे

यह सिर्फ एक किताब नहीं, बल्कि एक इंटरैक्टिव लर्निंग सिस्टम है। यह आपको सिर्फ 'पढ़ाता' नहीं, बल्कि आपकी 'तैयारी करवाता है'।

👉 इसका पूरा फायदा उठाने के लिए, हमारे 3-चरणीय मॉडल को अपनाएँ:

सफलता का 3-चरणीय मॉडल: Read -> Scan -> Test

Step 1: पढ़ें (Read)

- हर टॉपिक को ध्यान से पढ़ें।
- कठिन कॉन्सेप्ट्स को हमने आसान Hinglish में छोटे पॉइंट्स + उदाहरणों के साथ समझाया है।

Step 2: स्कैन करें (Scan)

- हर टॉपिक के अंत में आपको "अब प्रैक्टिस करें" सेक्शन में एक **QR कोड** मिलेगा।
- इसे मोबाइल कैमरे से स्कैन करें।

Step 3: टेस्ट दें (Test)

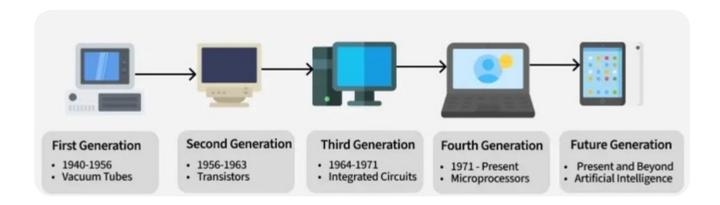
- स्कैन करते ही आप हमारी वेबसाइट cpctwale.com पर पहुँचेंगे।
- वहाँ असली पुराने परीक्षा प्रश्नों पर आधारित क्विज़ हल करें।

इस तरीके का जादू क्या है?

यह तरीका Passive Learning (सिर्फ पढ़ना) को Active Learning (पढ़ना + तुरंत प्रैक्टिस) में बदल देता है।

- पढ़ने के बाद तुरंत क्विज़ करने से कॉन्सेप्ट दिमाग में बैठ जाता है।
- आपको तुरंत पता चलता है कि आपकी तैयारी कहाँ है।
- आत्मविश्वास तेजी से बढ़ता है।

CPCT परीक्षा का पैटर्न और पासिंग मार्क्स


स्मार्ट तैयारी के लिए, परीक्षा की संरचना समझना ज़रूरी है।

भाग (Section)	विवरण (Description)	कुल अंक	कुल समय	पासिंग मार्क्स
भाग 1: MCQ	कंप्यूटर, GK, मैथ्स, रीजनिंग, कॉम्प्रिहेंशन	75	75 मिनट	38 अंक
भाग 2: टाइपिंग	इंग्लिश और हिंदी टाइपिंग टेस्ट	क्वालीफाइंग	15 + 15 मिनट	स्पीड के अनुसार स्कोर

MCQ का वेटेज (हमारा डेटा-विश्लेषण)

- कंप्यूटर प्रोफिशिएंसी: ~52 प्रश्न (मुख्य टारगेट!)
- रीडिंग कॉम्प्रिहेंशन (अंग्रेजी पैसेज): 5 प्रश्न
- गणित और रीजनिंग: ~12 प्रश्न
- सामान्य ज्ञान (GK): ~6 प्रश्न
 - 🗸 पास होने के लिए ज़रूरी अंक: 38/75
 - 👉 और सिर्फ कंप्यूटर के 52 प्रश्नों से ही यह लक्ष्य आसानी से हासिल किया जा सकता है।

■ 2.2 - कंप्यूटर की पीढ़ियाँ (GENERATIONS OF COMPUTERS)

जिस तरह इंसान बंदर से विकसित होकर आज का इंसान (ि विक्रिस्त) बना है, उसी तरह कंप्यूटर ने भी एक लंबा सफर तय किया है। एक पूरे कमरे जितने बड़े कैलकुलेटर (कि से लेकर हमारी जेब में रखे स्मार्टफोन () तक का यह सफर टेक्नोलॉजी में हुए क्रांतिकारी बदलावों की कहानी है।

(बंदि) परीक्षा में इस टॉपिक से 2-3 प्रश्न लगभग तय होते हैं, और वे सीधे-सीधे हर पीढ़ी की मुख्य टेक्नोलॉजी या उसके उदाहरण से पूछे जाते हैं।

🧠 Core Concepts: पाँच पीढ़ियों का सफ़र

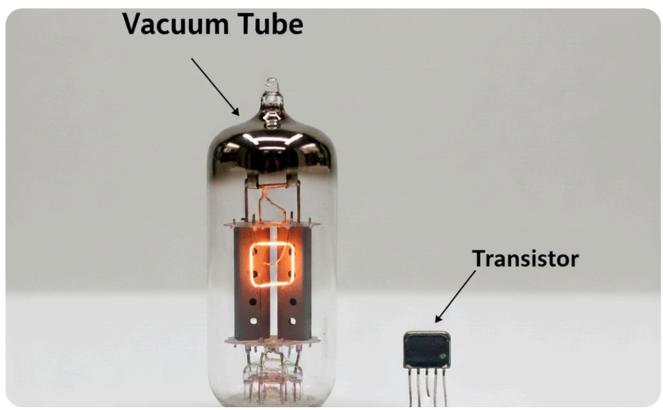
आइए, हर पीढ़ी को विस्तार से समझते हैं

पहली पीढ़ी : वैक्यूम ट्यूब्स का दौर (1940-1956)

यह कंप्यूटरों का "डायनासोर युग" 🖜 था। इस पीढ़ी के कंप्यूटर आकार में बहुत बड़े होते थे, अक्सर एक पूरे कमरे के बराबर।

एक वैक्यूम ट्यूब और कमरे के आकार के ENIAC कंप्यूटर का चित्र

• 🗘 मुख्य टेक्नोलॉजी (Key Technology): वैक्यूम ट्यूब्स (Vacuum Tubes)

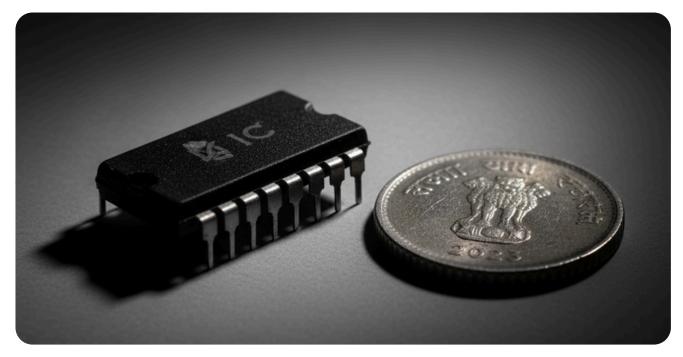

वैक्यूम ट्यूब कांच के बल्ब की तरह होते थे जो बिजली के सिग्नल को कंट्रोल करते थे।
 ये बहुत नाजुक, बड़े और अविश्वसनीय (unreliable) होते थे।

• 👔 विशेषताएँ (Characteristics):

- o 📏 आकार: बहुत विशाल (very large)।
- ७ गर्मी: हज़ारों वैक्यूम ट्यूब्स के कारण ये बहुत ज़्यादा गर्मी पैदा करते थे, इसलिए इन्हें ठंडा रखने के लिए बड़े-बड़े AC की ज़रूरत पड़ती थी।
- भाषाः ये केवल मशीनी भाषा (Machine Language) (0s and 1s) को समझते
 थे, जिस पर प्रोग्रामिंग करना बहुत मुश्किल था।
- ० 🗲 बिजली की खपत: ये बहुत ज़्यादा बिजली खाते थे।
- ० 🏆 उदाहरण: ENIAC और UNIVAC इस पीढ़ी के प्रसिद्ध कंप्यूटर थे।

दूसरी पीढ़ी (2nd Generation): ट्रांजिस्टर का आगमन (1956-1963)

यह एक क्रांतिकारी बदलाव 🐆 था। वैक्यूम ट्यूब्स की जगह एक छोटी, सस्ती और बेहतर टेक्नोलॉजी ने ले ली थी ("जैसा आप चित्र में देख सकते हैं")

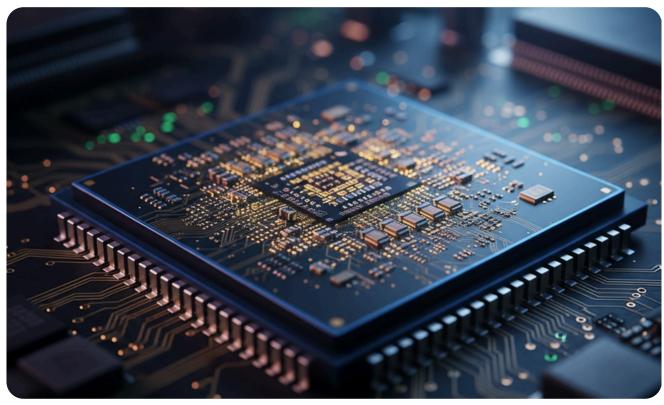


वैक्यूम ट्यूब के बगल में एक छोटा सा ट्रांजिस्टर

- 🗘 मुख्य टेक्नोलॉजी (Key Technology): ट्रांजिस्टर (Transistors)
 - ट्रांजिस्टर आकार में बहुत छोटा, तेज़, सस्ता और भरोसेमंद था। यह कम गर्मी पैदा करता था।
- 📊 विशेषताएँ (Characteristics):
 - ० 🦣 आकार: पहली पीढ़ी की तुलना में कंप्यूटर बहुत छोटे हो गए।
 - 🍳 🚀 गतिः काम करने की गति बढ़ गई।
 - ० 🗸 विश्वसनीयताः ये ज्यादा भरोसेमंद थे।
 - o 📟 भाषाः असेंबली भाषा और FORTRAN, COBOL जैसी High-Level Languages का विकास हुआ।
 - ॰ 🏆 उदाहरण: IBM 1401, CDC 1604.

तीसरी पीढ़ी (Third Generation): इंटीग्रेटेड सर्किट (IC) की शक्ति (1964-1971)

इस पीढ़ी में हज़ारों ट्रांजिस्टरों को एक छोटी सी सिलिकॉन चिप पर इकट्ठा कर दिया गया, जिसे इंटीग्रेटेड सर्किट (IC) कहा गया।



IC Chip का चित्र

- 🛱 मुख्य टेक्नोलॉजी (Key Technology): इंटीग्रेटेड सर्किट (ICs)
 - एक IC पर कई ट्रांजिस्टर लगे होते थे, जिससे कंप्यूटर का आकार और भी छोटा हो गया।
- 📊 विशेषताएँ (Characteristics):
 - ० 🍠 आकार और वज़न: कंप्यूटर और भी छोटे और हल्के हो गए।
 - === यूजर इंटरफ़ेस: पहली बार कीबोर्ड और मॉनिटर का उपयोग शुरू हुआ।
 - ॰ 🚱 ऑपरेटिंग सिस्टम: पहली बार ऑपरेटिंग सिस्टम का विकास हुआ।
 - ॰ 🏆 उदाहरण: IBM-360 series, PDP-11.

चौथी पीढ़ी (Fourth Generation): माइक्रोप्रोसेसर और पर्सनल कंप्यूटर (1971-Present)

aयह वह पीढ़ी है जिसने कंप्यूटर को हर घर और ऑफिस तक पहुँचाया (क्रांक्रा)। इसमें हज़ारों। Cs को एक ही चिप पर बना दिया गया, जिसे माइक्रोप्रोसेसर 🥮 कहा गया।

आधुनिक CPU माइक्रोप्रोसेसर

- 🗱 मुख्य टेक्नोलॉजी (Key Technology): माइक्रोप्रोसेसर (VLSI)
 - o एक अकेली चिप पर पूरा Central Processing Unit (CPU) आ गया।
- 📊 विशेषताएँ (Characteristics):
 - पर्सनल कंप्यूटर (PC): इसी पीढ़ी में PC का जन्म हुआ।

 - ⊕ नेटवर्किंगः इंटरनेट की शुरुआत हुई।
 - o 🏆 उदाहरण: Apple II, IBM PC, और आज के सभी डेस्कटॉप और लैपटॉप।

पांचवीं पीढ़ी (Fifth Generation): आर्टिफिशियल इंटेलिजेंस का युग (Present and Beyond)

यह वर्तमान और भविष्य की पीढ़ी है। इसका लक्ष्य ऐसी मशीनें बनाना है जो इंसानों की तरह सोच और सीख सकें। 🤐

- 🗱 मुख्य टेक्नोलॉजी (Key Technology): आर्टिफिशियल इंटेलिजेंस (AI) और ULSI
 - AI, मशीन लर्निंग और नेचुरल लैंग्वेज प्रोसेसिंग पर ज़ोर दिया जा रहा है।
- 📊 विशेषताएँ (Characteristics):
 - डिवाइस खुद से सीखने में सक्षम हैं।
 - o 🥍 वॉयस रिकग्निशन: आवाज़ को पहचानना (जैसे Siri, Google Assistant)।
 - ऐरेलल प्रोसेसिंग: एक साथ कई कामों को प्रोसेस करने की क्षमता।
 - ० 🏆 उदाहरण: रोबोटिक्स, स्मार्टफोन्स, सेल्फ-ड्राइविंग कारें 🚗।

💡 स्मार्ट टिप (Smart Tip):

CPCT परीक्षा में पहली तीन पीढ़ियों की टेक्नोलॉजी सबसे ज़्यादा पूछी जाती है। यह क्रम याद रखें:

V → T → I → M

(Vacuum Tube → Transistor → Integrated Circuit → Microprocessor)

यह क्रम याद रखने से आपके 1-2 अंक पक्के हो सकते हैं! 🔽

PYQ (पुराने पेपर्स से प्रश्न):

- ? "दूसरी पीढ़ी के कंप्यूटर किस पर आधारित थे?"
- ? "कंप्यूटर की किस पीढ़ी में, इंटीग्रेटेड सर्किट (IC) को विकसित किया गया था?"
- ? "VLSI का पूरा नाम क्या है?" (यह सवाल कई बार रिपीट हुआ है।)

अब प्रैक्टिस करें (Practice Now):

इस टॉपिक की आपकी तैयारी पूरी हो गई है। अब अपनी नॉलेज को टेस्ट करने के लिए, नीचे दिए गए QR कोड को स्कैन करें और cpctwale.com पर क्विज़ दें! 💪

- Test दीजिए और अपनी तैयारी जाँचिए → [Start Now]
- 🖀 वीडियो देखिए और टॉपिक को और गहराई से समझिए → [<u>Video</u>]

■ 2.3 - कंप्यूटर के प्रकार (TYPES OF COMPUTERS)

जिस तरह गाड़ियों की दुनिया में हर काम के लिए एक अलग गाड़ी होती है - शहर में घूमने के लिए बाइक 🦝, परिवार के लिए कार 🚗, और सामान ढोने के लिए ट्रक 🚐 - उसी तरह कंप्यूटर की दुनिया में भी हर ज़रूरत के लिए एक अलग तरह का कंप्यूटर होता है। एक वैज्ञानिक 🦃 जिस कंप्यूटर का इस्तेमाल करता है, वह आपके घर 🏠 के कंप्यूटर से बहुत अलग होता है।

कंप्यूटरों को मुख्य रूप से दो आधारों पर वर्गीकृत किया जाता है:

आकार और शक्ति (Size and Power)

कार्यप्रणाली (Working Principle)

आइए, इन दोनों को विस्तार से समझते हैं।

📏 1. आकार और शक्ति के आधार पर वर्गीकरण

यह वर्गीकरण कंप्यूटर की प्रोसेसिंग पावर, मेमोरी, आकार और कीमत पर आधारित है।

🤐 माइक्रोकंप्यूटर (Microcomputer) - आम आदमी का कंप्यूटर

यह वह कंप्यूटर है जिसे हम और आप अपने रोज़मर्रा के जीवन में इस्तेमाल करते हैं। इन्हें पर्सनल कंप्यूटर (PC) भी कहा जाता है।

७ अध्याय 1 - एक नज़र में (Chapter 1 - At a Glance)

टॉपिक	सबसे महत्वपूर्ण कॉन्सेप्ट	परीक्षा के लिए कुंजी	याद रखने की ट्रिक
2.1 कंप्यूटर क्या है?	IPO साइकिल	CPU, ALU, CU	💗 रेसिपी: कच्चा माल - > पकाना -> डिश
2.2 कंप्यूटर की पीढ़ियाँ	5 पीढ़ियों की टेक्नोलॉजी	Vacuum Tube, Transistor, IC, Microprocessor	VTIM 🗸
2.3 कंप्यूटर के प्रकार	Micro, Mini, Mainframe, Super	Mainframe vs Supercomputer	📻 मैनेजर (कई लोग) vs 🦃 वैज्ञानिक (एक काम)
2.4 मेमोरी की इकाइयाँ	बिट से टेराबाइट का क्रम	1 KB = 1024 Bytes	King MB Gave a TB Party 答
2.5 नंबर सिस्टम	डेसीमल (Base 10) vs बाइनरी (Base 2)	दोनों का आधार (Base) क्या है	Decimal = 'Deca' (दस), Binary = 'Bi' (दो)

🎯 अब प्रैक्टिस करें (Practice Now):

- ▼ Test दीजिए और अपनी तैयारी जाँचिए → [Start Now]
- 🖀 वीडियो देखिए और टॉपिक को और गहराई से समझिए → [<u>Video</u>]

हार्डवेयर और पेरिफेरल्स

स्वागत है दोस्तों, CPCT पार book के सबसे, सबसे, सबसे महत्वपूर्ण अध्याय में! ! अगर CPCT परीक्षा एक किला 📹 है, तो यह अध्याय उस किले का मुख्य द्वार है। इसे जीत लिया, तो समझो आधी जंग जीत ली। इस अध्याय में हम कंप्यूटर के उन सभी हिस्सों के बारे में जानेंगे जिन्हें हम अपनी आँखों से देख 👀 और हाथों से छू 🖐 सकते हैं - यानी हार्डवेयर (Hardware)।

इसे एक सरल तरीके से समझते हैं। अगर कंप्यूटर एक शरीर है, तो सॉफ्टवेयर (जैसे MS Word, Windows) उसकी आत्मा 🐆 है, और हार्डवेयर उसके हाथ, पैर, आँखें, कान और सबसे ज़रूरी, उसका मस्तिष्क 🧠 है। बिना हार्डवेयर के, सॉफ्टवेयर का कोई अस्तित्व नहीं है। और बिना हार्डवेयर की सही समझ के, CPCT परीक्षा पास करना लगभग असंभव है।

- EPROM (Erasable and Programmable ROM): पराबैंगनी किरणों (UV Light)
 से मिटाया जा सकता है।
- EEPROM (Electrically Erasable and Programmable ROM): बिजली के
 सिग्नल से मिटाया और बदला जा सकता है। पेन ड्राइव और SSD में इसी तकनीक का
 उपयोग होता है।

💢 RAM vs. ROM - सबसे बड़ी जंग (अति महत्वपूर्ण)

आधार (Basis)	RAM (Random Access Memory)	ROM (Read-Only Memory)
प्रकृति	वोलेटाइल (Volatile) - अस्थायी	नॉन-वोलेटाइल (Non- Volatile) - स्थायी
डेटा स्टोरेज	बिजली बंद होने पर डेटा मिट जाता है।	बिजली बंद होने पर भी डेटा सुरक्षित रहता है।
उपयोग	वर्तमान में चल रहे प्रोग्राम को स्टोर करना।	कंप्यूटर को स्टार्ट करने वाले निर्देश (BIOS) स्टोर करना।
ऑपरेशन	पढ़ा (Read) और लिखा (Write) दोनों जा सकता है।	सिर्फ पढ़ा (Read) जा सकता है।
गति	बहुत तेज़ (Very Fast)	RAM की तुलना में धीमी (Slower)
आकार	बड़ी क्षमता में (4 GB, 8 GB, 16 GB)	छोटी क्षमता में (कुछ MB)
सादृश्य	एक व्हाइटबोर्ड	🕮 एक छपी हुई किताब

3. कैश मेमोरी (Cache Memory) - CPU और RAM के बीच का सुपर-फास्ट ब्रिज 🌇

कैश मेमोरी, RAM से भी ज़्यादा तेज़ और CPU के सबसे करीब स्थित एक छोटी मेमोरी है। यह उन डेटा और निर्देशों को अपने पास रखती है जिनकी ज़रूरत CPU को बार-बार पड़ती है। इससे काम बहुत तेज़ी से होता है।

यह ठीक वैसा ही है जैसे एक शेफ अपनी रसोई में सबसे ज़्यादा इस्तेमाल होने वाले मसाले को अपने हाथ के पास एक छोटे डिब्बे में रखता है, तािक उसे बार-बार बड़े स्टोर रूम में न जाना पड़े। यहाँ, शेफ CPU है, छोटा डिब्बा कैश मेमोरी है, और स्टोर रूम RAM है।

💡 स्मार्ट टिप (Smart Tip):

RAM और ROM में कन्फ्यूजन हो तो यह याद रखें:

- RAM -> Raha Aur Mita (बिजली जाते ही रहा और मिटा) -> अस्थायी (Volatile)
- ROM -> Raha Original (हमेशा ओरिजिनल रहा) -> स्थायी (Non-Volatile)

🧵 पुराने पेपर्स में पूछे गए प्रश्न (PYQ Explanations):

- ? "निम्नलिखित में से कौन सी मेमोरी वोलेटाइल (volatile) प्रकृति की है?"
- 💡 "कंप्यूटर के स्टार्ट-अप रूटीन को कौन सी मेमोरी स्टोर करती है?"
- ? "BIOS का पूरा नाम क्या है?"
- ? "CPU और प्राइमरी मेमोरी के बीच एक हाई-स्पीड मेमोरी के रूप में कौन कार्य करता है?"

🞯 अब प्रैक्टिस करें (Practice Now):

- 🗾 Test दीजिए और अपनी तैयारी जाँचिए → [<u>Start Now]</u>
- 🖀 वीडियो देखिए और टॉपिक को और गहराई से समझिए → [<u>Video</u>]

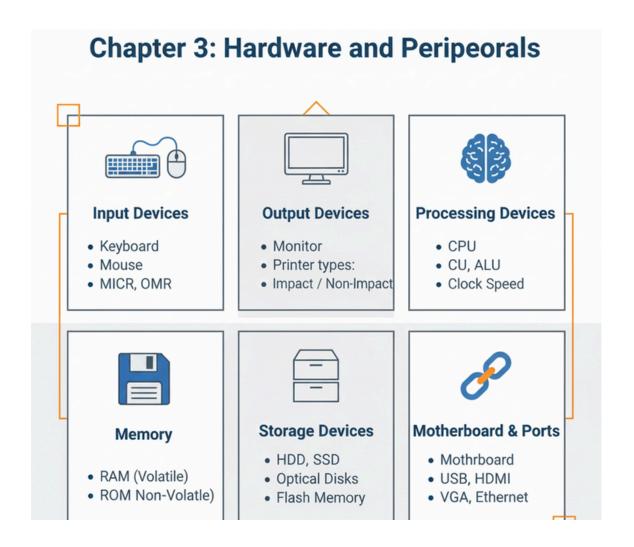
3.5 - स्टोरेज डिवाइस (STORAGE DEVICES)

🤔 स्टोरेज डिवाइस क्या हैं? (What are Storage Devices?)

पिछले टॉपिक में हमने प्राइमरी मेमोरी (RAM और ROM) के बारे में पढ़ा, जो कंप्यूटर के चलने के लिए ज़रूरी है। लेकिन RAM की सबसे बड़ी समस्या क्या थी? वह वोलेटाइल (अस्थायी) है, यानी बिजली जाते ही उसका सारा डेटा उड़

तो फिर हमारा ऑपरेटिंग सिस्टम (Windows), हमारे सॉफ्टवेयर (MS Office), हमारी फिल्में, गाने और ज़रूरी फाइलें कहाँ स्टोर होती हैं ताकि वे कंप्यूटर बंद करने के बाद भी सुरक्षित रहें?

इसका जवाब है: स्टोरेज डिवाइस (Storage Devices) में।


स्टोरेज डिवाइस को सेकेंडरी मेमोरी (Secondary Memory) या सहायक मेमोरी (Auxiliary Memory) भी कहा जाता है। ये डिवाइस नॉन-वोलेटाइल (Non-Volatile) यानी स्थायी (Permanent) होते हैं। इनका मुख्य काम बड़ी मात्रा में डेटा को लंबे समय तक सुरक्षित रखना है, तब भी जब कंप्यूटर बंद हो।

यह ठीक एक लाइब्रेरी िह्न या अलमारी िह्न की तरह है, जहाँ आप अपनी सारी किताबें और दस्तावेज़ स्थायी रूप से रखते हैं, जबकि RAM आपके काम करने की मेज़ की तरह है।

🗾 अध्याय ३: सारांश और रिवीज़न

बहुत बढ़िया! आपने CPCT परीक्षा का सबसे महत्वपूर्ण और सबसे ज़्यादा स्कोरिंग अध्याय सफलतापूर्वक पूरा कर लिया है। आपने कंप्यूटर के शरीर के हर अंग के बारे में जान लिया है। आइए अब परीक्षा में आने वाले मुख्य बिंदुओं को जल्दी से दोहराते हैं ताकि यह ज्ञान आपके दिमाग में हमेशा के लिए पक्का हो जाए। 6

📋 मुख्य बिंदुओं का सारांश (Summary of Key Points)

अध्याय ९

सामान्य जान (General Awareness)

नमस्ते दोस्तों! 👏

अब हम CPCT परीक्षा के उस सेक्शन पर आ गए हैं जो एक समुद्र **C** की तरह है - सामान्य ज्ञान (General Awareness)। इसका कोई निश्चित सिलेबस नहीं होता औ और यह सबसे अप्रत्याशित (unpredictable) सेक्शन माना जाता है। **?** लेकिन आपको पूरा समुद्र पीने की ज़रूरत नहीं है! **\o** हमें बस कुछ गिलास पानी चाहिए। **\oderawarrangle** इस अध्याय में हमारी रणनीति 'सब कुछ पढ़ने' की नहीं, बल्कि 'सिर्फ सबसे ज़रूरी पढ़ने' की होगी। **(ज)** हमारा लक्ष्य इस सेक्शन में विशेषज्ञ बनना नहीं, बल्कि कम से कम समय में 3-4 अंक सुरक्षित करना है। **()**

कंप्यूटर के महत्वपूर्ण Full Forms

शॉर्ट फॉर्म (Acronym)	फुल फॉर्म (Full Form)	सरल हिंदी में मतलब
(Acronym)		. 0
CPU	Central Processing Unit	कंप्यूटर का दिमाग।
ALU	Arithmetic Logic Unit	CPU का वो हिस्सा जो जोड़-घटाव (maths) करता है।
RAM	Random Access Memory	कंप्यूटर की 'काम करने वाली' मेमोरी (Volatile)।
ROM	Read-Only Memory	स्थायी मेमोरी जिसमें कंप्यूटर के स्टार्ट-अप निर्देश होते हैं।
BIOS	Basic Input/Output System	कंप्यूटर चालू करने वाला पहला प्रोग्राम (ROM में होता है)।
HDD	Hard Disk Drive	पुरानी, घूमने वाली (magnetic) स्टोरेज डिस्क।
SSD	Solid State Drive	नई और तेज़ स्टोरेज (जैसे पेन ड्राइव)।
USB	Universal Serial Bus	पेन ड्राइव, कीबोर्ड, माउस जोड़ने वाला पोर्ट।
VGA	Video Graphics Array	मॉनिटर को जोड़ने वाला नीला (blue) एनालॉग पोर्ट।
НОМІ	High-Definition Multimedia Interface	TV/मॉनिटर जोड़ने वाला नया (digital) पोर्ट।
GUI	Graphical User Interface	आइकॉन और माउस वाली सुंदर स्क्रीन (जैसे Windows)।
os	Operating System	कंप्यूटर को चलाने वाला मुख्य सॉफ्टवेयर (जैसे Windows, Linux)।
LAN	Local Area Network	एक बिल्डिंग या ऑफिस का छोटा नेटवर्क।
WAN	Wide Area Network	बड़ा नेटवर्क जो शहरों और देशों को जोड़ता है (जैसे इंटरनेट)।
TCP/IP	Transmission Control Protocol/Internet Protocol	इंटरनेट पर डेटा भेजने के मुख्य नियम।

PAGE 214

कंप्यूटर के महत्वपूर्ण Full Forms

нттр	Hypertext Transfer Protocol	वेबसाइट खोलने के लिए इस्तेमाल होने वाला प्रोटोकॉल।
HTTPS	Hypertext Transfer Protocol Secure	सुरक्षित (encrypted) वेबसाइट के लिए।
FTP	File Transfer Protocol	इंटरनेट पर फाइल डाउनलोड/अपलोड करने के नियम।
URL	Uniform Resource Locator	किसी भी वेबसाइट का पूरा पता (जैसे www.google.com)।
www	World Wide Web	इंटरनेट पर मौजूद सभी वेबसाइटों और जानकारी का जाल।
ASCII	American Standard Code for Information Interchange	कंप्यूटर को समझाने के लिए हर अक्षर को दिया गया एक नंबर।
MICR	Magnetic Ink Character Recognition	बैंक चेक पर लिखे ख़ास नंबर पढ़ने वाली मशीन।
OMR	Optical Mark Recognition	परीक्षा की OMR शीट (गोले भरने वाली) को जांचने वाली मशीन।
PDF	Portable Document Format	ऐसी फाइल जो किसी भी डिवाइस पर एक जैसी दिखती है।
GIGO	Garbage In, Garbage Out	अगर कंप्यूटर को गलत इनपुट दोगे, तो आउटपुट भी गलत ही मिलेगा।